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Abstract. Recently some methods have been presented to extract
ordinary differential equations (ODE) directly from an experimental
time series. Here, we introduce a new method to find an ODE which
models both the short time and the long time dynamics. The exper-
imental data are represented in a state space and the corresponding
flow vectors are approximated by polynomials of the state vector com-
ponents. We apply these methods both to simulated data and experi-
mental data from human limb movements, which like many other bio-
logical systems can exhibit limit cycle dynamics. In systems with only
one oscillator there is excellent agreement between the limit cycling
displayed by the experimental system and the reconstructed model,
even if the data are very noisy. Furthermore we study systems of
two coupled limit cycle oscillators. There, a reconstruction was only
successful for data with a sufficently long transient trajectory and rel-
atively low noise level.

1. Introduction

The modeling and analysis of dynamical systems is a field of increasing inter-
est, in part because of applications in forecasting and control [?]. For a long
time linear models have dominated descriptions of dynamical systems and
control theoretic approaches [?]. Very complex and randomlike behavior was
viewed from a statistical perspective in which very many degrees of freedom
were involved. Only quite recently have nonlinear models emerged, capable
of mirroring chaotic dynamics and other phenomena such as self excited oscil-
lation [?]. Such systems can exhibit extremely complex dynamical behavior,
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even though the underlying dynamics may be low dimensional. On the other
hand very high dimensional systems such as fluids or lasers can show simple
and low dimensional dynamics, which may be described using low dimen-
sional models [4,5]. In such systems most degrees of freedom are slaved and
only a small number of order parameters are necessary for a description [5].

Along with new theoretical concepts have come a variety of different tech-
niques to characterize the dynamics of such complex systems from any time
series representative of the system's dynamical behavior. For example, gen-
eralized dimensions or Liapunov exponents have been used and calculations
performed in complex systems all the way from the laser to the human EEG
[6].

In this article, we present a new method for constructing a model equation
from experimental time series that reproduces the dynamical behavior of the
given system. The time series has to be represented in a low dimensional
state space, e.g. position and velocity for a one dimensional oscillator. A
trajectory of the system is given by the evolution of a point in the state
space. A flow vector field, which is a function of the state vector components,
governs this dynamical behavior. In order to model the given time series with
a low dimensional ordinary differential equation (ODE) or flow vector, the
dynamics has to be deterministic, i.e. no crossovers of the trajectory in the
state space exist that are not due to noise [7]. Furthermore, the mapping of
the given time series into state space has to be bijective. That is, a discrete
point to point mapping must exist between the trajectory given as a time
series, and the trajectory given in state space, and vice versa. In one of our
experimental examples from human limb movement, pauses occur which do
not follow this condition.

The reconstructed model equation, e.g. an ODE, is a "global description"
[81, meaning the equation is valid on the whole subspace of the state space
where experimental data are available. The model equation is represented in
polynomials of the components of the state vector and the coefficients of these
polynomials are fitted to the experimental time series. Differential equations
of this type are always deterministic since they obey the Lipschitz condition
[9]. An advantage of this closed model equation is that it can be compared to
theoretical models and used to analyze and interpret the system's behavior.
Furthermore, this description may be implemented to control a given system
[10].

A disadvantage of a global description is that for higher dimensional sys-
tems and for higher order fits, the number of coefficients increases rapidly,
rendering the approach cumbersome and unfavorable. In this regard we want
to mention another approach, in which the dynamics is represented by a "lo-
cal description" [2,8,11]. Here the trajectory is forecast by estimating the
future trajectory by the trajectories of past states that come close to the
present state. Thus, the model equations are only valid in a small area of
state space, i.e., no closed description is possible. On the other hand, it
may be possible to forecast higher dimensional systems better than using the
global description.
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The goal of the present work is to provide a global description for a
given experimental time series, by reconstructing the underlying dynamics
as well as possible. Of course the resulting model, in general, does not
provide an explanation for the system's dynamics. Nevertheless, at least
in simple cases, it may still be possible to connect the dynamics and the
model equation to a deeper level of description, one which would allow for
an understanding of the reconstructed equation. As an aside, such insight
can be enhanced by empirical study. For example in [12] we show how an
observable, the relaxation time (i.e. the time taken to return to the limit cycle
after a perturbation), is related to the strength of the system's nonlinearity.
In our approach only very obvious state vector components are used, namely
the input data and their derivatives. Other state vectors, such as those that
can be created using delays [13], are less helpful in analyzing and interpreting
the reconstructed equations.

In earlier work the model equation was obtained by a direct fit of the
flow vector field, using an approach developed by Cremers and Hiibler [7].
A similar method was investigated in a slightly different manner by Crutch-
field and McNamara [8]. The Cremers and Hiibler approach, from now on
referred to as the "flow method", produces very good results if data from
a large enough subspace of the statespace are available. However, in many
experimental applications the system is not chaotic; rather it is attracted
very rapidly to a limit cycle. In such cases, only data from the limit cycle
can be obtained, in the complete or near absence of transient data. The flow
method usually does not perform well in the latter situation and often pro-
vides a model equation with unstable dynamics instead of a limit cycle. The
advantage of the present "trajectory method", described in detail in section
2, is that it handles data on the limit cycle very well even when they are
noisy; the procedure generally produces a stable fit.

It is worth noting that both the flow and the trajectory method can also
be applied to chaotic time series with generally good results. In the present
paper we study limit cycle oscillations, because there are many experimental (
systems in which this kind of behavior appears [14,15].

In section 3 we present some results, both for simulated data and for
experimental data from human limb movements [16,12]. Data from biological
systems are often very noisy, although it still proves possible in many cases, to
describe the trajectories with low dimensional deterministic model equations
[17]. First we study systems of single oscillators that may be described in
a two dimensional state space. Since the experimental data are only on a - For
limit cycle and are very noisy, the fitted coefficients sometimes depend quite
strongly on parameters of the fit, such as the length of the included dataset.
Nevertheless the trajectory of the given time series is approximated quite
well. If additional information such as transient data are available we show
that the reconstructed coefficients do not change very much. 1'-j

In section 3 we also study systems of two coupled limit cycle oscillators,
which constitute important models for biology in general [18] and in biological
coordination in particular. There, self-organization is seen when different
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coordination patterns arise as stable states of the coupled nonlinear dynamics
[17,19,201. Up to now, however, the reconstruction is shown to be successful
for simulated data with moderate additional noise.

Section 4 is a short conclusion that raises future issues.

2. Reconstruction from time series and the trajectory method

As a first step it is necessary to chose a state space for the time series to be
described. The dimension of this state space has to be at least as large as
the dimension of the given time series. Various methods exist to calculate
the dimension of an experimental time series [21].

In the systems investigated here, however, the dimension of the system
is in most cases quite obvious (for actual calculation see Kay, Saltzman &
Kelso [121) and the physical meaning of the measured time series gives rise
to the dimension of the used state space.

The state space can be constructed either with a time delay [13] or with
derivatives. Differentiation increases noise, but this state space was used
to describe the investigated low dimensional systems because only the first
derivative in the trajectory method and the second derivative in the flow
method are necessary. The advantage of using derivatives to define the state
space is that the components have physical meaning. In many cases also
the derivatives can be measured directly, thus reducing noise. Moreover, the
state space components must be uncorrelated, which is often a problem in
delay-constructed state spaces [8] if the delay is not chosen appropriately.

Many model equations of nonlinear oscillatory systems use a polynomial
series as a favorable ansatz [7]. The flow vector field is represented by polyno-
mials of the state vector components and the coefficients of these polynomials
are fitted. Thus, given the d-dimensional state space vector

"= x (2.1)

the i-th component of the flow is given by

m

ii C1 .. x1 " d (2.2)

where m is the highest order of the polynomials and c,,... ' are the fitted
coefficients.

Although the method described in [7] fits the flow directly, in the tra-
jectory method the information included in the trajectory, the evolution of
the state vector in time, is used. Starting from appropriately chosen initial
states Y, (t,), the model equation is used to obtain an estimation of the states
for later times 4. (tj + At,). The coefficients are fitted by minimizing the
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distances between the states predicted by the model and the experimental
states. The quality function Q is defined as

imax ,max

Q= II n(t + t)- o (ti + At,) 11 (2.3)
j,1=1

where I is the Euclidian norm, :F are the experimental states, tj are
the jm,, times when the initial states are taken and At, are the ,,,, times
after which experimental and model states are compared. 4, is a function
of the coefficients ci,...id which are determined by the minimum of Q as a
function of the coefficients:

= Min Q (2.4)
CiI ... sd

The difference between this new trajectory method and the recent works
of Cremers and Hfibler [7] and Crutchfield and McNamara [8] is that it
employs both short time and long time behavior for the fit. Experimental
and model trajectory are compared at 1,, different times At,. The "flow
method" uses only one small time step or only short time behavior, while
the method by Crutchfield and McNamara uses only the long time behavior
by using one large time step.

In eq.(2.3) the differences for all state space components are included. In
most cases, however, only the squares of the differences between the measured
experimental data and the corresponding model data

S= (mj + At,) - x, (tj + LAt,)) 2  (2.5)
j,i=1

were used to define the quality function. In the experimental systems
studied here, usually the first derivatives of the data are the other components
of the state space, but these were not included in the minimized quality
function. For such experimental data, the dynamics of the modelequation
occasionally became unstable if the quality function Q (eq.2.3) was used,
because the velocities were too noisy due to the differentiation process. On
the other hand, when simulated data with a small amount of noise were used
to test the present trajectory method, distances in the derivatives according
to eq.(2.3) were also taken into account, though the quality of the fit was
not changed. The goal of the method is, of course, to reconstruct only the
experimental time series itself. It is possible to include more than one time
series in the fitting process, e.g. in the coupled oscillator case. Also, if the
experimental set up allows the derivative to be obtained directly, it might be
favorable to also use these data.

In order to solve the minimization problem we used a routine provided by
IMSL [22]. The calculation needs an initial model equation, i.e. initial coef-
ficients of the model equation, which in most cases are chosen to be without
any force. If the maximal At,... is chosen very large. say about one oscilla-
tion period, another first guess for the initial coefficients is often necessary.
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Otherwise problems with divergences appear. As a first guess, model equa-
tions that were obtained using smaller Ati. were used. A disadvantage
of this method is the large amount of computing time necessary for large
At,. Therefore only in cases in which the flow method fails is this method
favorable.

The At, were chosen according to

At = r2' - ' (2.6)

where T is the sampling rate and 1,,, was chosen in the range from 4 (8
samples) to 9 (256 samples). But also other definitions of At are possible,
for example we used

At, = 21r (2.7)

Nevertheless, no significant differences in the quality of the results were
found.

The initial states ie(tj) should cover the whole limit cycle. However, not
all experimental data can be used as initial states because the calculation
time would bc too large. Thus a delay of b samples between two initial states
was employed.

Since the trajectory method was applied only to single oscillators and to
systems of two coupled oscillators, we restrict the problem to these systems.
In the case of the single oscillator, the problem reduces to

m
E Cil, i,2 X 'i  i (2.8)

il ,i2 =0

and for m = 3 only 10 coefficients need be fitted.
Instead of integrating a model differential equation, it is also possible to

use a map, which is much less time consuming. If very small time steps r,
smaller than 1% of the oscillation period are chosen, the model equations for
a single oscillator are given by

Xn+i = X, + 1r(in + ,,+I) (2.9)

m

in+t = X + E G, 1 i 2 3 4 Xn

i1 ,2=0

The approximation for x,+ 1 is only valid for small time steps, however.
For larger time steps the fit of a model equation for Xn+i is also necessary,
thereby eliminating the advantage of reduced calculation time. Furthermore
the model equations become more complicated, because more coefficients are
necessary.

The coefficients for an ODE can simply be estimated from the coefficients
for this map according to
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a (2.10)
r

if the time step is small enough.
In the case of two coupled oscillators the model equations are given by

XC l cii 2 i 3 4 XI 12 i2 (2.11)
il ,i2 ,i3 ,4=0

i2 . . il ji2Xiadji4
C2 ,i,, 2 i3 4 X 1 1 2 X 2

il ,i2 ,i3,4 =0

and for a fit up to third order 70 coefficients may be fitted.

3. Examples for the reconstruction of dynamical systems

In this section we demonstrate the reconstruction methods on simulated
model equations as well as on real experimental data. Some of the latter
were previously reported rhythmic movements of the single hand about the
wrist [12] and a very lengthy single hand "control" time series obtained in
a study of mode-locking by Kelso and DeGuzman [23]. Rhythmic behav-
ior seems a logical place to start with the present approach because it is
biologically meaningful in many species t14,20] .

3.1 Single oscillator, simulated time series

Simulated data for the well known van der Pol oscillator with the ODE

- . • 2(31
X -X_ Xe- e X (3.1)

were studied as an example for a single oscillator with a limit cycle. The

trajectury method was applied both to time series with and without transient
data. Furthermore, an additional gaussian noise force was included in eq.
(3.1) and again data with and without transient were fitted. In fig.(1 a) the
used trajectory with noise is shown. In the following examples the order of
the fitted polynomials was always 3.

For transient data without noise the coefficients were reproduced very
well, with differences less than 1% relative to the coefficients of the simulated
differential equation. The coefficients were not reproduced quite as exactly
for data that lacked transients, but the differences were still quite small. The
results of the fit both for model ODE and model maps are listed in Table 1.

The reason for the underestimation of the linear term in x and the over-
estimation of the linear term in i is not yet understood. One possibility is
that the trajectory method may systematically overestimate the stability of
a limit cycle, if the data do not include enough information about transient
behavior. On the other hand, in many cases of fitted experimental and sim-
ulated data that lie on a limit cycle, the flow method produces a model with

.... ........
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unstable dynamics. This was the reason for the development of the trajectory
method in the first place. Generally speaking, only very little information
about the stabilizing terms is present on the limit cycle itself. Therefore, in
the absence of transient data the method used often influences the stability
of the fitted model.

The fit of the data with added noise also reproduces the coefficients quite
well, if transient data are included, see Table 2. For a time series without
transient data the coefficients of eq.(3.1) were not found and for different
fit parameters the coefficients were also very different, see Table 3. But the
trajectory of these model equations was always in good agreement with the
trajectory of the van der Pol oscillator. Fig.1 (b) displays the trajectory for
the model equation of Table 2 with ima, = 7. These results suggest that in
many cases different model equations may be valid for the reconstruction of a
given trajectory. However, if the information in the time series is larger, e.g.,
if transient information is provided, the variety of possible model equations
can be drastically reduced and model coefficients obtained with different fit
parameters are more or less equal.

3.2 Single oscillator, experimental time series

The foregoing conclusion applies also to experimental data obtained in stud-
ies of human rhythmical movement. As will be shown, the model coefficients
can also be a function of the length of the time series included in the fit.

One time series was a 3Hz motion collected at a sampling frequency of
200Hz. The movement is very smooth and the limit cycle is not too noisy (see
fig. 2 a). In this case the fit provided two different model equations, whose
coefficients nearly always matched one of these equations. Also the standard
deviations of the coefficients calculated with different fit parameters were
fairly small. The first equation was found if only five oscillation periods were
included in the data, while the other equation was found if more or less the
whole time series of about ten periods was used. The two model equations
are listed in Table 4; simulated trajectories are shown in fig.2 (b) and (c).
Only a fit with At, chosen according to eq.( 2 . 7 ) gave a model equation, which
was again different to the two model equations listed in Table 4. All these
equations describe the given trajectory very well and not one of them can
be considered to be better than the others. The rather high noise level often
present in the experimental data make a decision about which model equation
is favorable very difficult or even impossible.

Also for these experimental data the coefficients changed slightly and
homogeneously with the maximal length of At. As mentioned earlier, this
effect might be due to the reconstruction method itself. More theoretical
work is required on this issue. The flow method also gave a model equation
(see Table 4) with a stable dynamics. However, the time for the relaxation
to the limit cycle is larger than for the trajectory method (see fig. 2 d). The
reason for the difference in relaxation time lies in the different fit methods.

For experimental obtained at lower frequencies (e.g. 1.5 Hz) the fit be-
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comes more problematic. In this case the subject pauses at maximal displace-
ment (see fig.3a). Such pauses, which are dependent upon the frequency of
motion, cannot be modeled with a two dimensional deterministic equation.
As mentioned in the introduction the mapping of the time series into state
space must be bijective, which is not the case for this time series. If one
wants to also fit this trajectory another approach is necessary. Instead of
fitting one ODE to this trajectory, it is possible to fit the movements in
each direction independently with one ODE for each direction. The whole
dynamics is then described with two discrete movements and a "trigger",
which switches according to the performed frequency from one ODE to the
other. Of course, we are not inferring from this description alone that this is
the way the nervous system performs the task.

The fit of these discrete movements is not possible with the trajectory
method as described in section 2, but a fit with the flow method is possible.
However, the model equations are only valid in the corresponding part of
the state space. If the initial conditions are not chosen appropriately, the
trajectory may not relax to the limit cycle. Furthermore, the force must be
switched off when the velocity passes zero, and the other ODE switched on
sometime later. In fig.(3b,c) a trajectory of a model equation is shown, both
as a time series and in state space. The trajectory is reconstructed quite
well. A fit for different parts of the very long experimental time series was
calculated. However, the coefficients differ, depending on the part of the time
series that was used for reconstruction.

3.3 Reconstruction of coupled oscillators

For systems of two coupled limit cycle oscillators only simulated data have
been reconstructed up to now. To understand the difficulties in the recoo,-
struction of this system we first review briefly some results from studies of
biological movements.

In the original experiments subjects were asked to perform oscillatory
motions with the two index fingers. Only two phase-locked patterns prove to
be stable: one in which the fingers move symmetrically (homologous muscles
contracting in-phase) and the other in which the fingers alternate (homolo-
gous muscles contracting anti-phase). The discovery, later examined in great
detail and shown to take the form of a nonequilibrium phase transition (e.g.
enhanced fluctuations, critical slowing down of the order parameter were all
observed) was that the anti-phase pattern lost stability at a critical move-
ment frequency and shifted to the more stable in-phase, symmetric pattern
(see [20] for reviews). Using concepts of synergetics, the order parameter
dynamics for relative phase were identified and later derived by nonlinear
coupling [17] The significance of coupled nonlinear oscillators for biology in
general [18] and the foregoing results showing that the stability and change of
coordinated movement behavior may be understood as nonequilibrium phase
transitions. make systems of nonlinearly coupled oscillators a natural choice
of study for the present reconstruction methods. We limit our analysis to
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simulated data for the moment.
For a system of equal oscillators in a phase locked state the positions

and the velocities of the oscillators are strictly correlated, even equal for the
in-phase movement. Since it is necessary to have uncorrelated state vector
components, a fit with the state vector 5 = (x 1 ,i?1 ,x 2,i 2) is not possible
with the present reconstruction methods. However, since the positions and
velocities are strictly correlated, a model equation assuming two independent
oscillators describes the given time series as well as a system of coupled
oscillators. Such a model may even be considered more favorable, since many
fewer coefficients are necessary to model single oscillators without coupling
than a full system of coupled oscillators.

To reconstruct the coupling terms transient data must be available. If the
system is attracted to a phase-locked state that is in-phase, the state vector

= x (3.2)
X1 - X2

is appropriate, since the third and fourth components are attracted to
zero and the transient to the phase-locked state is easily visualized. The
differential equation of one studied example is given by

it = -2.0xi + 0.2ii - 0.4x .i1 + O.lx 2 + 0.3i 2  (3.3)

i2 = -2.0x 2 + 0.2-; 2 - 0.4x2-; 2 + O.1X 1 + 0.3i,

(3.4)

An example of a simulated trajectory with additional noise is shown in
fig.4a and b together with the trajectory of the fitted model with the same
initial conditions. These simulations may be compared with the simulations
in [17] and especially [241, which do not, of course, reconstruct the full tra-
jectory. For the fit, both the flow and the trajectory method were used and
both reconstruct the trajectory very well. Notably, in systems with a shorter
transient a good reconstruction is also possible. Whether a reconstruction
is possible or not depends again on the length of the available transient and
the noise in the experimental iata.

The coefficients of the simulated differential equation are only recon-
structed when the additional noise is smaller than in the plotted example.
A related problem appears when the model is simulated using other initial
conditions. If the simulated time series is too noisy or the transient too short,
the model equation will often produce an unstable trajectory. The reason
is that the flow vector field is reconstructed well in the subspace for which
experimental or simulated data are available, but poorly outside this region.
For the systems of coupled limit cycle oscillators studied here, only data on
the limit cycle are available, and the model equation is valid only close to the
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limit cycle. In two dimensional systems with a single oscillator this problem
is not so important, although divergences appear when the initial conditions
are set further away for the limit cycle. In higher dimensional systems such
issues are much more important.

Finally we want to mention that a reconstruction of the dynamics of
coupled oscillators is possible also for other systems that are not phase-
locked. There the results are often better since a larger subspace of the state
space is reached.

4. Conclusion

In a number of cases (both simulated and experimental) we have shown that
it is possible to reconstruct the dynamics of a system from an experimental
time series using a novel method, the trajectory method. With reconstructing
methods the information included in the time series is reduced to a very small
number of coefficients of an ODE, including the same information as the
time series. On the other hand, we have drawn attention to the drawbacks
of such a reconstruction technique as well as its advantages in comparison to
other methods in literature. A number of questions remain that are worth
addressing.

One concerns how the amount of information that is necessary to produce
a successful fit can be estimated and measured. This is a crucial issue:
As mentioned above, fitted model equations generally cannot provide the
relaxation time to the limit cycle if no transient data are available. How
much information must be included in the time series, so that predictions for
global measures such as the relaxation time are possible?

A further issue concerns the influence of the used fit method and the used
fit parameters on the results both of which need to be studied systematically.
Finally, the fit method should give a minimal model equation for the experi-
mental time series, where minimality is to be measured in terms of order and
dimensionality of the fit and the quality of the description of the time series.

5. Survey

The essence of complex biological systems that possess many degrees of free-
dom is that they can temporarily assemble their components into a much
lower dimensional structure whose dynamics are nonlinear and hence capable
of exhibiting complicated behavior, among which are oscillations, bifurcations.
multistability, even deterministic chaos. Thus the brain, with 1014 neurons
and neuronal connections, - tO cell types, hundreds of active chemicals is a
materially complex system, whose dynamics nevertheless can often be demon-
strated to be much lower dimensional (for review see e.g. [6]). Similarly, the
motor system (ignoring for the moment its neural and vascular support pro-
cesses) has minimally 792 muscles and 100 joints to coordinate during the
course of typical activities. Watch a concert pianist, for example, and you
will see a continuous blending of posture, expression, and articulated birnai-
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ual performancl,. Like music itself, the artist's performance Is coordinated
on many time scales.

To guarantee stability of behavior on the one hand and flexibility on the
other, the behavioral dynamics must be nonlinear. In fact, in the last few
years all the signature features of nonequilibrium phase transitions, i.e. where
patterns form in a spontaneous, self-organized fashion under non-specific
changes in control parameters [5] have been observed and modeled in hu-
man movement coordination tasks (e.g. [16,17,19,20]). Once the macro-
scopic behavioral patterns and their dynamics have been found (through the
methodology of phase transitions or qualitative changes in behavior), they can
be derived or Lynthesized by cooperatively coupling nonlinear oscillators (e.g.
[17,24]). Such cooperative coupling affords both a rigorous definition of the
relation between levels of description and indicates how the compression of
degrees of freedom occurs, e.g. from the limit cycle dynamics of the individual
componer - to the point attractor" dynamics of the collective variable, or or-
der parameter relative phase. Thus, the reduction is not to some fundamental
unit or level of analysis, but rather to find laws at one level and derive them
from another.

In this regard, it is quite clear that nonlinear oscillators play quite a cen-
tral role at many levels of description and throughout the natural sciences.
A large variety of complex systems effectively reduce their degrees of free-
dom to the frequency and phase or mode-locking dynamics of coupled non-
linear oscillators ([14] for recent review). One of us is inclined to think
that this is a strategy for the nervous system too which must perform tasks
that require the coordination among many spatially and temporally distributed
processes (see e.g. [23]). Such a coordinative design is not only apparent
in voluntary behavior but in many other "systems", ranging from so-called
locomotory- respiratory rhythms, cardiac rhythms, cardiovascular-respiratory-
somatomotor interactions, to individual neurons such as the squid axon and
so forth. Stationary states, oscillations, bifurcations, intermittency, multi-
stability, chaos - in other words, rich dynamics that depend on the region in
parameter space in which the system lives - are ubiquitous features of cou-
pled or forced nonlinear oscillators. Thus, in the present article, the nonlin-
ear oscillator, exemplified by data obtained from studies of human rhythmical
behavior, is the chief target of study.

Of course, this level-independent strategy on complex systems means that
one must be able to place the system under study in a context that will en-
able one to deduce lawful structure from real data that are often noisy, the
so-called inverse problem. Above, we mentioned using phase transitions or
behavioral instabilities as a special entry point where laws may be found. In-
stabilities serve to demarcate behavioral patterns, thereby allowing a precise
zdentification of order parameters for patterns and their nonlinear dynamics
[5,19,20]. But what other methods may allow one to obtain dynamical laws
(equations of motion) directly from measurements? And what steps can be
taken to optimize these descriptions'? Many tools and techniques have been
employed in efforts to characterize the dynamics of complex systems, includ-
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ing dimension, metric entropy, Lyapunov exponents and so forth (see e.g.
[6]). Here we introduce a new method that reconstructs the entire flow vector
field from the individual trajectory of the system, i.e. the evolution of a point
in a low dimensional state space. The reconstructed flow vector or ordinary
differential equation constitutes a global description, i.e. is valid on the whole
subspace of the state space where the experimental data reside. We discuss
the advantages and disadvantages of this method in the article itself.

Reconstruction of the underlying dynamics, of course, does not necessarily
provide a physical explanation or enhance scientific insight, per se. Neverthe-
less, when complemented by theoretically motivated experimental observations
it may still be possible to connect model equations to deeper levels of descrip-
tion. Certainly, in the history of science there are examples where an initially
guessed mathematical formalism and eventual physical interpretation led to
the samc results. In the case of complex systems, where it is often not possible
to derive a mathematical structure from first principles, these reconstruction
methods could play an important role.

One possible application for methods of reconstruction is in the field of
controlling dynamical systems. It may be possible, for instance, to control
very complex systems if the dynamics of the system can be described with a
small number of order parameters. Of course, for such control it is necessary
to describe the dynamics of the uncontrolled system as exactly as possible.
Here reconstruction can be an important tool.

The goal of the present work is not simply to analyze experimental mate-
rial, but to show, in general, what is or might be possible in the field of recon-
struction from time series. The described methods can be used in all fields of
scientific research, where dynamical variables are observed. Biological move-
ments, the dynamics of electrical potentials in nerves, fluid mechanics or the
dynamics of chemical reactions are some examples. The central ansatz of
the method is simply that any observations are produced by a dynamical sys-
tem in the presence of noise. The aim is to provide a minimal model that
reproduces observed behavior. We hope that the given examples will help re-
searchers to think about possible applications of the present methods in their
field of interest.
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modeltype lma c0,1  c,2.1 other c
ODE 4 1.147 -0.9910 -1.041 < 0.065
ODE 5 1.129 -0.9729 -1.028 < 0.042
ODE 6 1.135 -0.9564 -1.024 < 0.035
ODE 7 1.128 -0.9472 -1.021 < 0.030
map 4 1.199 -1.102 -1.157 < 0.019
map 5 1.015 -0.9321 -0.9859 < 0.030
map 6 1.006 -0.9296 -0.9802 < 0.036
map 8 1.009 -0.9170 -0.9781 < 0.041
map 9 1.013 -0.9175 -0.9795 < 0.039

Table 1: The coefficients for the fit of a simulated van der Pol oscillator
(eq. 3.1). r was 0.067 for fit with an ODE and 0.02 for map. The other
parameters were: b = 7, jmx = 100, the At were chosen according
to eq.(2.6). The used data were without noise and without transient.
Map coefficients are rescaled according to eq.(2.10)

1max Co,1  C1,0 C2 , 1  other c

4 1.594 -1.230 -1.125 < 0.317
5 1.395 -1.476 -1.103 < 0.308
6 1.153 -1.293 -0.9650 < 0.194
7 0.9140 -0.8094 -0.8282 < 0.045

Table 2: The coefficients for the fit of a simulated van der Pol oscillator
(eq. 3.1) with an ODE. The time series was with noise (see fig.1 a) and
with transient data. The other parameters were: r = 0.067, b = 7,

jax = 100, the Atj were chosen according to eq.(2.6).
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coefficient 1max = 4 1,, = 4 1max = 5 lmax = 6 1max =7

Co0 o 0.306 -0.022 -0.433 -0.089 -0.232
Co,_ 4.063 3.173 4.349 4.235 3.814
Co,2 -0.117 -0.034 0.102 0.006 0.043
Co,3 -0.638 -0.455 -0.708 -0.693 -0.621
cI,0 -1.338 -1.708 -0.868 -0.391 -0.529
c___ 0.131 0.009 -0.058 -0.045 0.003

c1,2 0.990 0.829 0.943 0.750 0.662

C2,0 -0.046 0.010 -0.133 0.061 0.092
C2.1 -2.089 -1.883 -2.054 -1.878 -1.750

__C3,0 -0.022 0.104 -0.137 -0.237 -0.187

Table 3: The coefficients for the fit of a simulated van der Pol oscillator
(eq. 3.1), as in table (2) but without transient data. The second
column with 1ma. = 4 is the result of a fit with jm  = 200. Note the
large differences in the linear coefficient cl,o.

coefficient short time s. SD long time s. SD 21
7 flow method

Co'o 1.227 0.528 -1.169 0.198 -0.856 -1.368
Co,1  0.916 0.092 0.682 0.219 0.729 0.424
Co,2 -0.599 0.132 -0.008 0.029 -0.075 0.055
c0,3 -0.189 0.032 -0.064 0.037 -0.077 -0.009
cl'o -4.825 0.366 -4.359 0.246 -5.524 -3.856

c_ ,_ 0.849 0.040 -0.827 0.068 1.019 0.800

c1,2 0.063 0.061 0.074 0.065 0.263 0.034
C2,0 -1.094 0.399 0.897 0.138 0.875 0.976
C2,3 -1.083 0.107 -0.615 0.150 -0.760 -0.448

C3,0 0.452 0.127 0.670 0.147 1.488 0.324

Table 4: The coefficients for the fit of an experimental time series, a
single hand movement as in fig.(2) with the trajectory method. The
standard deviation was calculated with the coefficients from fits with
6 different fitparameters in the case of the short time series and 9
different fitparameters in the case of the long time series. For these
fits the At were chosen according to eq.(2.6). Some of the coefficients
are small and can be neglected, cl, 2 in both cases and Co, 2 for the long
time series. The cubic term in the velocity c0,3 is small but important
for the stability of the model equations. Furthermore the result with
At chosen according to eq.(2.7) is listed. For comparison, the result
of a fit with the flow method is listed, the difference is basically in the
cubic term in the velocity Co,3 , which is very small.
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Figure 1: (a) A trajectory of a simulated van der Pol oscillator (eq.
3.1) with noise in a state space with position and velocity as state
vector components. The trajectory up to the point marked with t

was excluded for fits without transient data.
(b) A trajectory in the same state space for the model equation of
table (3) with lmax = 7. Although the coefficients are very different
from the coefficients of eq.(3.1) the shape of the trajectory simulated
with the model equation is very similar to the trajectory of the van
der Pol oscillator.

Figure 2: (a) A trajectory of an experimental single hand movement
(around wrist) at a frequency of 3Hz in arbitrary units in a state space
with position and velocity as state vector components. Trajectories
in the same state space for the model equations of table (4), (b) long
time series, (c) short time series, (d) flow method.

Figure 3: (a) Displacement for a single finger movement at a frequency
of 1.5Hz in arbitrary units. Note the pause at maximal displacement.
(b) Time series of the model equation obtained by the flow method.
(c) Same time series as (b) in state space with position and velocity
as state vector components.

Figure 4: (a) (b) Trajectory of eq.(4) in the state space given by
(2). The slightly distorted line is the simulated time series with noise,
the straight line is a simulation of the model equation with the same
initial condition. For ease of visualization in (c) and (d) we plot the
positions of both oscillators against each other to show the transition
from anti-phase to in-phase pattern. (c) is a simulation of eq.(4)
(without noise) and (d) is a trajectory of the model equation obtained
by the trajectory method.
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